Statistical Aggregation Analysis Characterizing Macro Functions with Cross Section Data

نویسنده

  • Thomas M. Stoker
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alfred P . Sloan School of Management

This paper investigates the use of individual cross section data to describe macro functions. Necessary and sufficient conditions (denoted AS) are found for OLS slope coefficients from a cross section to consistently estimate the first derivatives of the macro function. AS embodies both sets of aggregation assumptions known; linear aggregation and sufficient statistics , and thus represents gen...

متن کامل

Ignoring Clustering in Confirmatory Factor Analysis: Some Consequences for Model Fit and Standardized Parameter Estimates.

In many situations, researchers collect multilevel (clustered or nested) data yet analyze the data either ignoring the clustering (disaggregation) or averaging the micro-level units within each cluster and analyzing the aggregated data at the macro level (aggregation). In this study we investigate the effects of ignoring the nested nature of data in confirmatory factor analysis (CFA). The bias ...

متن کامل

Time Series Cross Section method for monitoring students' page views of course materials and improving classroom teaching

To enable teachers to monitor student engagement and improve classroom instruction, a data mining method and an Excel macro are developed in this work. The data mining method is based on a Time Series Cross Section (TSCS) framework and designed for application to students’ page views of course materials that are created over Moodle. The Excel macro generates TSCS tables of students’ page views ...

متن کامل

Vector Regression : a bridge between micro and macro ?

iii Contents Abstract v 1. Introduction 1 2. Optimal aggregation 5 3. From micro to macro 9 4. From macro to semi-and non-parametric 11 5. Statistical learning 17 6. Conclusion 23 Appendix. The dual quadratic program 23 References 27 v Abstract Support Vector (SV)-regression, a common tool in statistical learning, estimates functions as linear combinations of given (nonlinear) kernel functions....

متن کامل

The generation of fuzzy sets and the~construction of~characterizing functions of~fuzzy data

Measurement results contain different kinds of uncertainty. Besides systematic errors andrandom errors individual measurement results are also subject to another type of uncertainty,so-called emph{fuzziness}. It turns out that special fuzzy subsets of the set of real numbers $RR$are useful to model fuzziness of measurement results. These fuzzy subsets $x^*$ are called emph{fuzzy numbers}. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008